Direct Design of Parallel second-order filters for Instrument Body Modeling

نویسنده

  • Balázs Bank
چکیده

This paper 1 presents a direct design technique for parallel second-order sections based on a perceptually motivated logarithmic scale, with application to instrument body modeling. Traditional FIR and IIR design techniques work on a linear frequency scale, which is usually not optimal for audio applications. Warped filters and Kautz filters are good candidates for perceptually motivated filter design. However, the direct implementation of warped or Kautz filters is computationally less efficient compared to an IIR filter of the same order. The perceptually motivated frequency resolution can also be achieved by the proposed design method, without the disadvantage of increased computational complexity. The filter design has two phases. First, the pole frequencies of the second-order sections are set to a predefined logarithmic scale, or can be determined from a warped filter design. Then the zeros are found by a simple least squares algorithm, as the optimization problem becomes linear in parameters for a given set of poles. As high-order (up to 1000) filters can be robustly designed, this technique is particularly well suited for instrument body modeling. Moreover, the parallel structure allows flexible modifications to the body transfer function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

Simulation of Piano Sustain-pedal Effect by Parallel Second-order Filters

This paper presents a sustain-pedal effect simulation algorithm for piano synthesis, by using parallel second-order filters. A robust two-step filter design procedure, based on frequency-zooming ARMA modeling and least squares fit, is applied to calibrate the algorithm from impulse responses of the soundboard and the string register. The model takes into account the differences in coupling betw...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Audio Equalization with Fixed-Pole Parallel Filters: An Efficient Alternative to Complex Smoothing

Recently, the fixed-pole design of parallel second-order filters has been proposed to accomplish arbitrary frequency resolution similarly to Kautz filters, at 2/3 of their computational cost. This paper relates the parallel filter to the complex smoothing of transfer functions. Complex smoothing is a well-established method for limiting the frequency resolution of audio transfer functions for a...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007